2020
Lipophilic compounds, but not fucoxanthin, mediate the genotoxic effect of photoautotrophic grown Phaeodactylum tricornutum in Caco-2 and HT-29 cells Gille, A.; Hollenbach, R.; Trautmann, A.; Gomez Rodriguez, M.; Krüger, R.; Bischoff, S. C.; Posten, C.; Briviba, K. 2020. In Journal of Functional Foods (64). DOI: 10.1016/j.jff.2019.103671 |
2019
2018
Production of protein-rich extracts from disrupted microalgae cells: Impact of solvent treatment and lyophilization Grossmann, L.; Ebert, S.; Hinrichs, J.; Weiss, J. (2018). Algal Research 36 (2018), p. 67-76, DOI: 10.1016/j.algal.2018.09.011 |
Critical review of microalgae LCA studies for bionergy production Ketzer, F.; Skarka, J.; Rösch, C. (2018). BioEnergy Research (2018) 11, p. 95-105, DOI: 10.1007/s12155-017-9880-1 |
Microalgae for integrated food and fuel production Rösch, C.; Roßmann, M.; Weikert, S. (2018). GCB Bioenergy 2018,DOI: 10.1111/gcbb.12579 |
Microalgae as a potential source of carotenoids: Comparative results of an in vitro digestion method and a feeding experiment with C57BL/6J mice Gille, A.; Neumann, U.; Lous, S.; Bischoff, S.C.; Briviba, K. (2018). Journal of Functional Foods (49), p. 285-294, DOI: 10.1016/j.jff.2018.08.039 |
Variability of in vitro ruminal fermentation and nutritional value of cell‐disrupted and nondisrupted microalgae for ruminants Wild, K. J.; Steingaß, H.; Rodehutscord, M. (2018). GCB Bioenergy 2018, DOI: 10.1111/gcbb.12539 |
Pressurized extraction of unsaturated fatty acids and carotenoids from wet Chlorella vulgaris and Phaeodactylum tricornutum biomass using subcritical liquids Derwenskus, F.; Metz, F.; Gille, A.; Schmid-Staiger, U.; Briviba, K.; Schließmann, U.; Hirth, T. (2018). GCB Bioenergy 2018, DOI: 10.1111/gcbb.12563 |
Bioavailability and Safety of Nutrients from the Microalgae Chlorella vulgaris, Nannochloropsis oceanica and Phaeodactylum tricornutum in C57BL/6 Mice Neumann, U.; Derwenskus, F.; Gille, A.; Louis, S.; Schmid-Staiger, U.; Briviba, K.; Bischoff, S.C. Nutrients. 2018, 10(8), 965, DOI: 10.3390/nu10080965 |
Mikroalgen in der Humanernährung – eine sinnvolle Zukunftsperspektive? Neumann, U; Bischoff, S.C. Aktuel Ernahrungsmed. 2018; 43(02): 102-110. DOI: 10.1055/a-0595-6520 |
Variability in nutrient composition and in vitro crude protein digestibility of 16 microalgae products Wild, K. J.; Steingaß, H.; Rodehutscord, M. (2018). Journal of Animal Physiology and Animal Nutrition 2018, 1-14, DOI: 10.1111/jpn.12953 |
Exploring the potential of high-density cultivation of cyanobacteria for the production of cyanophycin Lippi, L.; Bähr, L.; Wüstenberg, A.; Wilde, A.; Steuer, R. (2018). Algal Research (31), p. 363-366, DOI: 10.1016/j.algal.2018.02.028 |
Anti-inflammatory effects of Phaeodactylum tricornutum extracts on human blood mononuclear cells and murine macrophages Neumann, U.; Louis, S.; Gille, A.; Derwenskus, F.; Schmid-Staiger, U.; Briviba, K.; Bischoff, S.C. (2018). Journal of Applied Phycology, DOI: 10.1007/s10811-017-1352-7 |
Effect of precipitation, lyophilization, and organic solvent extraction on preparation of protein-rich powders from the microalgae Chlorella protothecoides Grossmann, L.; Ebert, S.; Hinrichs, J.; Weiss, J. (2018). Algal Research (29), S. 266-276, DOI 10.1016/j.algal.2017.11.019 |
Microalgae Schließmann, U.; Derwenskus, F.; Schmid-Staiger, U. (2018). Chapter 6.4. In: Bioeconomy-Shaping the Transition to a Sustainable Bio-based Economy, Springer International Publishing, ISBN: 978-3-319-68151-1 |
2017
Effect of sonication on bioaccessibility and cellular uptake of carotenoids from preparations of photoautotrophic Phaeodactylum tricornutum Gille, A.; Hollenbach, R., Trautmann, A.; Posten, C.; Briviba, K. (2017). Food Research International, DOI: 10.1016/j.foodres.2017.12.040 |
Advanced characterisation of encapsulated lipid powders regarding microstructure by Time Domain – Nuclear Magnetic Resonance Linke, A.; Anzmann, T.; Weiss, J.; Kohlus, R. (2017). Journal of Microencapsulation 34, p. 140-150, DOI 10.1080/02652048.2017.1300198 |
2016
Awakening of a Dormant Cyanobacterium from Nitrogen Chlorosis Reveals a Genetically Determined Program Klotz, A.; Georg, J.; Bucinscka, L.; Watanabe, S.; Reimann, V.; Januszewski, W.; Sobotka, R.; Jendrossek, D.; Hess, W. R.; Forchhammer, K. (2016). Current Biology 26, p. 2862-2872, DOI: 10.1016/j.cub.2016.08.054 |
Effect of phosphate availability on cyanophycin accumulation in Synechocystis sp. PCC 6803 and the production strain BW86 Trautmann, A.; Watzer, B.; Wilde, A.; Forchhammer, K.; Posten, C. (2016). Algal Research, 20, p. 189–196, DOI: 10.1016/j.algal.2016.10.009. |
Prozessführung zur phototrophen Protein-Produktion mit Mikroalgen Trautmann, A.; Schirmer, M.; Posten, C. (2016). Chemie Ingenieur Technik, 2016, 88(9), 1409, DOI: 10.1002/cite.201650062. |
Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii Gille, A.; Trautmann, A.; Posten, C.; Briviba, K. (2016). International journal of food science and nutrition, 67(5); p. 507-513. |
2015
Metabolic pathway engineering using the central signal processor PII Watzer, B.; Engelbrecht, A.; Hauf, W.; Stahl, M.; Maldener, I.; Forchhammer, K. (2015). Microbial Cell Factories, 14:192, DOI: 10.1186/s12934-015-0384-4 |